41 research outputs found

    A semi-Lagrangian Vlasov solver in tensor train format

    Full text link
    In this article, we derive a semi-Lagrangian scheme for the solution of the Vlasov equation represented as a low-parametric tensor. Grid-based methods for the Vlasov equation have been shown to give accurate results but their use has mostly been limited to simulations in two dimensional phase space due to extensive memory requirements in higher dimensions. Compression of the solution via high-order singular value decomposition can help in reducing the storage requirements and the tensor train (TT) format provides efficient basic linear algebra routines for low-rank representations of tensors. In this paper, we develop interpolation formulas for a semi-Lagrangian solver in TT format. In order to efficiently implement the method, we propose a compression of the matrix representing the interpolation step and an efficient implementation of the Hadamard product. We show numerical simulations for standard test cases in two, four and six dimensional phase space. Depending on the test case, the memory requirements reduce by a factor 102−10310^2-10^3 in four and a factor 105−10610^5-10^6 in six dimensions compared to the full-grid method

    Efficient Explicit Time Stepping of High Order Discontinuous Galerkin Schemes for Waves

    Full text link
    This work presents algorithms for the efficient implementation of discontinuous Galerkin methods with explicit time stepping for acoustic wave propagation on unstructured meshes of quadrilaterals or hexahedra. A crucial step towards efficiency is to evaluate operators in a matrix-free way with sum-factorization kernels. The method allows for general curved geometries and variable coefficients. Temporal discretization is carried out by low-storage explicit Runge-Kutta schemes and the arbitrary derivative (ADER) method. For ADER, we propose a flexible basis change approach that combines cheap face integrals with cell evaluation using collocated nodes and quadrature points. Additionally, a degree reduction for the optimized cell evaluation is presented to decrease the computational cost when evaluating higher order spatial derivatives as required in ADER time stepping. We analyze and compare the performance of state-of-the-art Runge-Kutta schemes and ADER time stepping with the proposed optimizations. ADER involves fewer operations and additionally reaches higher throughput by higher arithmetic intensities and hence decreases the required computational time significantly. Comparison of Runge-Kutta and ADER at their respective CFL stability limit renders ADER especially beneficial for higher orders when the Butcher barrier implies an overproportional amount of stages. Moreover, vector updates in explicit Runge--Kutta schemes are shown to take a substantial amount of the computational time due to their memory intensity

    GEMPIC: Geometric ElectroMagnetic Particle-In-Cell Methods

    Full text link
    We present a novel framework for Finite Element Particle-in-Cell methods based on the discretization of the underlying Hamiltonian structure of the Vlasov-Maxwell system. We derive a semi-discrete Poisson bracket, which retains the defining properties of a bracket, anti-symmetry and the Jacobi identity, as well as conservation of its Casimir invariants, implying that the semi-discrete system is still a Hamiltonian system. In order to obtain a fully discrete Poisson integrator, the semi-discrete bracket is used in conjunction with Hamiltonian splitting methods for integration in time. Techniques from Finite Element Exterior Calculus ensure conservation of the divergence of the magnetic field and Gauss' law as well as stability of the field solver. The resulting methods are gauge invariant, feature exact charge conservation and show excellent long-time energy and momentum behaviour. Due to the generality of our framework, these conservation properties are guaranteed independently of a particular choice of the Finite Element basis, as long as the corresponding Finite Element spaces satisfy certain compatibility conditions.Comment: 57 Page

    A massively parallel semi-Lagrangian solver for the six-dimensional Vlasov-Poisson equation

    Full text link
    This paper presents an optimized and scalable semi-Lagrangian solver for the Vlasov-Poisson system in six-dimensional phase space. Grid-based solvers of the Vlasov equation are known to give accurate results. At the same time, these solvers are challenged by the curse of dimensionality resulting in very high memory requirements, and moreover, requiring highly efficient parallelization schemes. In this paper, we consider the 6d Vlasov-Poisson problem discretized by a split-step semi-Lagrangian scheme, using successive 1d interpolations on 1d stripes of the 6d domain. Two parallelization paradigms are compared, a remapping scheme and a classical domain decomposition approach applied to the full 6d problem. From numerical experiments, the latter approach is found to be superior in the massively parallel case in various respects. We address the challenge of artificial time step restrictions due to the decomposition of the domain by introducing a blocked one-sided communication scheme for the purely electrostatic case and a rotating mesh for the case with a constant magnetic field. In addition, we propose a pipelining scheme that enables to hide the costs for the halo communication between neighbor processes efficiently behind useful computation. Parallel scalability on up to 65k processes is demonstrated for benchmark problems on a supercomputer

    A mass-conserving sparse grid combination technique with biorthogonal hierarchical basis functions for kinetic simulations

    Full text link
    The exact numerical simulation of plasma turbulence is one of the assets and challenges in fusion research. For grid-based solvers, sufficiently fine resolutions are often unattainable due to the curse of dimensionality. The sparse grid combination technique provides the means to alleviate the curse of dimensionality for kinetic simulations. However, the hierarchical representation for the combination step with the state-of-the-art hat functions suffers from poor conservation properties and numerical instability. The present work introduces two new variants of hierarchical multiscale basis functions for use with the combination technique: the biorthogonal and full weighting bases. The new basis functions conserve the total mass and are shown to significantly increase accuracy for a finite-volume solution of constant advection. Further numerical experiments based on the combination technique applied to a semi-Lagrangian Vlasov--Poisson solver show a stabilizing effect of the new bases on the simulations
    corecore